High-level ab initio studies of unimolecular dissociation of the ground-state N3 radical.

نویسندگان

  • Peng Zhang
  • Keiji Morokuma
  • Alec M Wodtke
چکیده

A comprehensive study of the unimolecular dissociation of the N(3) radical on the ground doublet and excited quartet potential energy surfaces has been carried out with multireference single and double excitation configuration interaction and second-order multireference perturbation methods. Two forms of the N(3) radical have been located in the linear and cyclic region of the lowest doublet potential energy surface with an isomerization barrier of 62.2 kcal/mol above the linear N(3). Three equivalent C(2v) minima of cyclic N(3) are connected by low barrier, meaning the molecule is free to undergo pseudorotation. The cyclic N(3) is metastable with respect to ground state products, N((4)S)+N(2), and dissociation must occur via intersystem crossing to a quartet potential energy surface. Minima on the seams of crossing between the doublet and quartet potential surfaces are found to lie substantially higher in energy than the cyclic N(3) minima. This strongly suggests that cyclic N(3) possesses a long collision-free lifetime even if formed with substantial internal excitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling deoxyribonucleic acid and ribonucleic acid damage in the gas phase.

This short review outlines the tandem mass spectrometric methods for the generation and analysis of transient nucleobase radicals relevant to deoxyribonucleic acid and ribonucleic acid damage. Radical hydrogen atom adducts to uracil, adenine, cytosine and N-methylcytosine were generated by femtosecond electron transfer to the corresponding gas-phase cations in fast beams at 8 keV kinetic energy...

متن کامل

Ab Initio Theoretical Studies on the Kinetics of the Hydrogen Abstraction Reaction of Hydroxyl Radical with CH3CH2OCF2CHF2 (HFE-374pc2)

The hydrogen abstraction reaction of OH radical with CH3CH2OCF2CHF2 (HFE-374pc2) is investigated theoretically by semi-classical transition state theory. The stationary points on the potential energy surface of the reaction are located by using KMLYP density functional method along with 6-311++G(d,p) basis set. Vibrational anharmonicity coefficients, ...

متن کامل

Classical trajectory studies of the molecular dissociation dynamics of formaldehyde: H2CO H2+CO

Classical trajectory calculations have been carried out to simulate the unimolecular decomposition of formaldehyde in the ground electronic state (Se). Global potential-energy surfaces were constructed using the empirical valence-bond (EVB) approach. Two sets of ab initio input were used to characterize two different EVB potential-energy surfaces, and trajectory calculations using one of these ...

متن کامل

Global ab initio ground-state potential energy surface of N4.

We present a global ground-state potential energy surface for N4 suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation in N2-N2 collisions. To obtain the surface, complete active space second-order perturbation theory calculations were performed for the ground singlet state with an active space of 12 electrons in 12 orbitals and the maug-cc-...

متن کامل

A theoretical study of the vibrational energy spectrum of the HOCl/HClO system on an accurate ab initio potential energy surface

A new, global analytical potential energy surface is constructed for the X A8 electronic ground state of HOCl that accurately includes the HClO isomer. The potential is obtained by using accurate ab initio data from a previously published surface @Skokov et al., J. Chem. Phys. 109, 2662 ~1998!#, as well as a significant number of new data for the HClO region of the surface at the same multirefe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 122 1  شماره 

صفحات  -

تاریخ انتشار 2005